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AXIALLY SYMMETRIC CAVITATION FLOW AT SMALL 
CAVITATION NUMBERS 

A. DAGAN 
MOD Scientific Department, Division 46, P.O. Box 2250, Haifa. 31021, Israel 

SUMMARY 
A method for computing the drag coefficient of a body in an axially symmetric, steady-state cavitation flow 
is presented. A ‘vortex ring’ distribution along the wetted body surface and along the cavity interface is 
assumed. Since the location of the cavitation interface is unknown a priori, an iterative procedure is used, 
where, for the first stage, an arbitrary cavitation interface is assumed. The flow field is then solved, and by an 
iterative process the location of the cavitation interface is corrected. Even though the flow field is governed 
by the linear Laplace equation, strong non-linearity resulting from the kinematic boundary conditions 
appears along the cavitation interface. An improved numerical scheme for solving the dual Fredholm 
integral equations is obtained by formulating high-order approximations to the singular integrals in order to 
reduce the matrix dimensions. Good agreement is found between the numerical results of the present work, 
experimental results and other solutions. 
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INTRODUCTION 

Cavitation flow appears in many hydrodynamic problems and its impact on engineering design is 
of primary interest. In particular, much concern has been devoted over the last 20 years to  two- 
dimensional cavitating hydrofoils. Many similarities exist between the two-dimensional problem 
and the axially symmetric one. The potential flow assumption is the common ground between the 
various methods for solving such flows. However, no direct method for solving the axially 
symmetric case has been suggested. This is because of the non-linearity resulting from the 
kinematic boundary condition along the cavity interface and the unknown location of the cavity 
interface itself. An exception is the work of Garabedian’ who solves the axisymmetric case by 
applying an asymptotic correction to  the two-dimensional flow. 

Because of the numerical difficulties encountered while solving the axially symmetric cavitation 
flow in the physical domain, Brennen2 has transformed the physical system to (4, +)-co-ordinates 
(potential and stream function respectively). This transformation removes the geometrical 
complexity in the physical domain due to the fact that both the wetted part of the body and the 
cavity interface appear as a single streamline in the transformed plane. However, the transformed 
form of the Laplace equation is non-linear, therefore an iterative point technique is used in order 
to solve the equation numerically. 

In the same way Mogel and Street3 propose a traditional iterative method for computing the 
two-dimensional cavitation flow behind the plate. The first stage of this method assumes an 
arbitrary initial location for the cavity interface. Laplace’s equation is solved in the physical plane 
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using a second-order, finite difference approximation, while applying the boundary conditions of 
constant pressure on the cavity interface and zero normal velocity on the plate. The assumed 
cavity interface is then corrected by using the kinematic boundary condition (zero mass flux 
across the interface). 

One of the most effective methods for calculating the flow over fully immersed bodies uses 
distributions of potential singularities along the body surface. This method is known as the 
‘boundary integral method’. This class of singularities includes vortex (or dipole) and source 
distributions. The main computational complication involved in such methods is the appearance 
of singular integrals. The work of Armstrong and Dunham4 can be classified in this category. 
Here the cavity interface as well as the wetted body is replaced by a ‘vortex ring’ distribution, and 
the interface location is corrected by an iterative process. Since the application of this method 
requires large and fast computers, the authors present only a simplified, approximate solution. 

Since a finite difference approximation to these singular integrals leads to full matrices, a high- 
order truncation error is required to reduce the matrix dimensions. Moreover, owing to the 
singularity in the integrand, the traditional numerical methods are not capable of evaluating such 
integrals properly. One way to remove this difficulty is to represent the regular terms within the 
integrand by the use of the spline-fit method.5 This method enables one to solve an arbitrary body 
within the flow field to a high degree of approximation or, alternatively, with predetermined 
precision, to reduce the matrix dimensions. However, the authors of Reference 5 preferred to use a 
numerical integration in each interval rather than reduce the computation time by computing 
these integrals analytically. 

There are some approximate solutions related to cavity flows where the wetted body together 
with the cavity interface are represented by an ellipsoid.6 

MATHEMATICAL MODEL AND BOUNDARY CONDITIONS 

The potential flow assumption is commonly used to describe the flow field in cavitation flow. i.e. 

V 2 4  = 0. 

This flow field description fits the front part of the cavity interface well, but fails to describe the 
rear part, which is turbulent.2 The appearance of turbulence in the rear part of the cavity interface 
is due to the cavity closure. Therefore the potential flow assumption is physically unrealistic in 
this region, where in addition such an assumption leads to a contradiction. On one hand the 
pressure along the cavity interface is supposed to be the vapour pressure, and on the other hand 
cavity closure will require a stagnation point at the closure point, i.e. stagnation pressure. Thus a 
possible mechanism behind the closure of the cavity interface is the appearance of a fully wetted 
wake in which the pressure is gradually recovered from the vapour pressure to the free stream 
pressure. In practice, the closure region is marked by considerable turbulence and some local 
unsteadiness2 In order to remove the ‘closure point problem’ several models exist, of which the 
simplest and most widely used is the Riabouchinski model7 in which longitudinal symmetry 
about the plane of maximum diameter of the cavity is assumed. 

An important point is the nature of the separation point (the point where the cavity interface 
separates from the wetted body). The separation is abrupt whenever the wetted body contains a 
slope discontinuity and is considered to be smooth otherwise. However, the cavity separation is 
essentially a viscous phenomenon’ and takes place when the wetted-body shear stress becomes 

The classical condition for smooth separation requires that the curvature of the free 
streamline be finite at the separation, in which case it can be shown to be equal to the curvature of 
the solid body at the detachment point.4 This condition does not take into account real-fluid 



945 AXIALLY SYMMETRIC CAVITATION FLOW 

effects on the position of the cavitation separation due to viscosity. Brennen2 has shown that the 
position of the cavitation separation on smooth bodies depends at least on the Reynolds number. 
Flow visualization in the neighbourhood of the fully developed cavity on axisymmetric head 
forms has shown the existence of laminar boundary layer separation upstream of cavitation 
separation, and the distance between the two depends strongly on the Reynolds number. On the 
basis of this result Arakeri’ developed a semi-empirical method to predict the position of 
cavitation separation on smooth bodies. In the present study an abrupt separation, or a smooth 
separation, where the separation location is known a priori, is considered. As is pointed out in 
Reference 4, the singularity in the separation point curvature should be taken into account, 
otherwise no solution can be expected. Therefore the correct representation of the cavity interface 
is a vortex sheet distributed along the cavity interface and along the wetted nose, where the 
singularity in the separation point curvature will appear in the vortex sheet strength at the 
separation point. 

By using Green’s theorem, the velocity potential of an arbitrary point within the flow field can 

The integration region denoted by B is taken over the wetted body and over the cavity interface, 4 
is the potential function, R is the radial distance from B to an arbitrary point (xl, y,, zl), d/an is 
the derivative normal to the boundary element dA and $o is the far-field potential. The first 
integral represents a source-sink distribution, while the second one describes a distribution of 
doublets with axes normal to B. By assuming that &plan is continuous across the interface and 
across the wetted nose (Neumann condition),” equation (1) reduces to the following form: 

4- 4 0  = jjB 4*; (&) dA. 

In such a case an artificial flow field is generated within the closed region described by the cavity 
interface and the wetted nose, where 4 is now discontinuous across the boundary. Hence 
4* = bout-&, where 4,,, is the outer potential along the boundary and 4in is the inner potential 
along the boundary. On B the last equation reduces to the following form: 

By dividing the body surface into small elements of constant dipole strength and taking into 
account the fact that a dipole with constant strength can be replaced by a vortex ring around the 
boundary of the dipole element, the following expression is obtained: 

uB = 3 V,(l,cos 8 + 1, sin 0) - v,(e,l,  + e ,IR)  dS, 
where 

1 
J[(x -xJ2 + (R + r)’] 

J [ ( X - X ~ ) ~ + ( R + ~ ) ’ ]  r 1 - k  

ex = 

eR = 1 - (7d (k2) -2K(k’ ) ) ,  1 2 - k 2  
(4) 

4Rr k2 = 
( x - ~ x , ) ’ + ( R + r ) ~  ’ 
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Here E is the complete elliptic integral of the second kind, K is the complete elliptic integral of the 
first kind and B is the inclination angle of the tangent to the meridian section of the surface 
relative to the longitudinal axis.’ We define the boundary co-ordinates (s, l) as follows (Figure 1): 

r(<) = sin O(v) dv, 

x(<)= 1: cosB(v)dv. 
( 5 )  

s: R(s) = sin B(v) dv, 

xl(s)= cos B(v)dv, 

s: 
1: 

These co-ordinates are preferable for solving equation (4). By using equations (4) and (5), the 
asymptotic behaviour of the leading terms of the induced coefficients (ex, eR)  in the vicinity of the 
singular point (s-+<, x-+x l ,  R+r, k z + l )  is 

Hence the leading terms of the asymptotic expansion behave like l/(s- <) in the vicinity of the 
singularity, or, in another words, the leading terms behave similarly to the two-dimensional 
solution resulting from a Cauchy integral in the complex plane. This singularity should be taken 
into consideration when an appropriate numerical scheme for such integrals is developed. This 
point will be discussed in the next section. 

The integral equation (4) is essentially the Dirichlet-type solution of (1) for a given tangential 
velocity on B. In a steady-state cavitation flow the boundary B is considered as a single stream 
surface. Therefore the kinematic boundary condition along B can be expressed as follows: 

d dR 
dt dx 
- [ R  - R(x  I)] = ijV [ R - R(x I)] = U ,  - - U ,  = 0, 

where ur and ox are the velocity components in the radial and horizontal directions respectively. 
By applying Bernoulli’s law and assuming constant pressure along the cavity interface, the 
dynamic boundary condition can be easily evaluated as 

where Pv is the vapour pressure, P ,  is the hydrostatic pressure and pw is the liquid density. The 
term (P ,  - Pv)/3 pw V is also defined as the cavitation number G. For cavitation flows for which 
ofO, several models can be used,’ but the simplest and most widely used is the model of 
Riabouchinski mentioned previously. The asymptotic cavity length for a small cavitation number 

Figure 1. Schematic description of the boundary B and the co-ordinates (s,  () 
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is given by 

where L is the distance of the maximum-diameter station of the cavity from the nose and D is the 
diameter at the separation point. The drag coefficient c d  for a small cavitation number behaves as 
c d  =Cp) + C&')a + . . . ; hence for a small cavitation number the ratio L/D-+oo. Consequently, 
an infinite cavity length is assumed in this study as a model for a small-cavitation-number flow. 

(1 +u)sin 8- V, cos 8 =O. 

The kinematic boundary condition on B can be rearranged as follows: 

Upon substitution, the following equation is obtained: 

v,(s)Ce,(s, 5 )  sin W)- eR(s, 5) cos W)l ds = sin W), 

where s1 is the arc length of B. 
The tangential velocity must be equal to the vortex density along B, yielding 

(1 + u) cos 8 + V,  sin 8 = V, 

(7) 

or 

u,(s)[e,(s, ()cosO(<)+e,(s, <)sin8ft)] ds=cos8(5). (8) 

Equation (7) is a Fredholm integral of the first kind while equation (8) is of the second kind.5 

NUMERICAL SCHEMES 

Ordinary integration schemes fail to properly evaluate the singular integrals (presented in the 
previous section). Thus in this section, for clarity, we will develop and check our numerical 
scheme initially for a fully wetted body without a cavity. In the next section the method is 
extended to a flow with a cavity. In order to remove the difficulty experienced as a result of the 
singular integrals, the Fredholm integral equation (7) is rewritten in a different form which 
isolates the leading singularity: 

where q(s, 4 )  is finite for all values of s and 5. 
The body surface is divided into N - 1 equal intervals of length h; the function q(s, 5 )  is defined 

at each end point and is linear with respect to us. q(s, 5 )  has two stagnation points at s = O  and 
s = ( N  - 1)h. In order to satisfy the boundary condition on equation (7) or (8), N - 2 check points 
( t j )  were selected. At each check point we require the boundary condition to be fulfilled. It is clear 
that for an acceptable, stable numerical scheme, the results (apart from the truncation error) 
should not depend on the particular set of points t j  chosen. 

In order to increase the accuracy of the proposed system, or alternatively to reduce the matrix 
size for a given accuracy, a high-order approximation to the integral is needed. In any such 
approximation, the singular behaviour of the elliptic function has to be taken into account. The 
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elliptic function can be expressed, with an absolute error of as follows:” 

K ( k 2 )  = K ,  ( k 2 )  In (1 - k 2 )  + K2(k2) ,  

E ( k 2 )  = El (k2)  In (1 - k 2 )  + E2(k2) ,  

where 

L 

K 2 ( k 2 ) =  - 1 ai(l-k2)’, E 2 ( k 2 ) =  ar(1-k’)’ 
i = O  i = O  

and ai, a:, bi, b: are defined as follows:” 

a, = 1.3862944, a, =0.1119723, a2 = 0.0725296, 
b, = 0.5000000, b,  =0.1213478, 6 ,  =0*0288729, 
a; = 1~0000000, =0.4630151, a; =04077812, 
b8 = 0~0000000, b: = 0.2452727, b; = 0.04 12496. 

The last expressions are transformed to the boundary co-ordinates (s, 5) in the following manner: 

s-5 5-5 +2K,(k2)ln-- =K*+K*In- 
h ’  

s-5 s-t  2E,(k2)ln-- = E: + E z  In- 

1 2  h 
1-k2  

h h .  
1 -k2 

(8 - t) E ( k 2 )  = ( E,(k2)1n7 

In this representation K T ,  K ; ,  ET and E ;  are regular functions. The Fredholm integral equation 
of the first kind can now be rewritten as 

where 

and 

A , (k2)= (2 - k2)E: - 2(1 - k2)KT,  

A 2 ( k 2 )  = (2 - k 2 ) E ;  -2(1- k 2 ) K f ,  

B1(k2)= -Ai (k2)+  - k 2 E T ,  R 
r 

R 
r 

B2(k2)  = - A2(k2)  + -kZE; .  

Note that f(s, 5) and g(s, 5 )  are regular functions. The formulation of equation (12) in a finite 
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difference form is written as 

949 

where XP is represented by a central finite difference operator with truncation error of order h3: 

P P2 XP=exp ph- =1+-p6+-dZ, ( aax) 2 2 

where 

P! =!+ 112 +!- 1,2 > Cjfi'=Ji+1/2-Ji-1/2 

and where p and p are defined by 

The finite difference operators x, p, 6 operate on J ,  and gi, j .  The above formulation reduces the 
Fredholm integral equation of the first kind to the following form: 

1 N  
- 1 A i , j ~ i =  sinej, l < j < N .  (13) 47c 

In order to check the accuracy of this linear system, the results are compared with the exact 
solution for a moving sphere, with the right-hand side of equation (13) taken as the exact value. 
The linear system converges rapidly to the exact solution as indicated by the error (see Table I), 
which is proportional to the expected truncation error, of order h3. However, near the stagnation 
points the error increases continuously, reaching order hZ. Numerical experiments show that 
selecting different sets of evenly spaced check points t j  produces no errors of order greater than 
the truncation error. 

ITERATIVE PROCESS FOR THE CAVITY INTERFACE 

The wetted nose and the cavity interface denoted by B are divided into small intervals as in the 
previous section. For the first step a cavity interface location is chosen, which is arbitrary except 
that a continuous slope is maintained at  the separation point. Under this assumption, the 
Fredholm integral equation of the first kind can be written as 

Equation (14) is satisfied on the wetted nose, at N mesh points. The matrix Ai, is the same matrix 
as in equation (13) and is a function of the geometry of B. In order to satisfy the dynamic 
boundary condition, a constant velocity uM is assumed, where uw is the tangential velocity at the 
separation. Note that VN = uM is assumed on the cavity interface. Clearly, equation (14) ensures 
that the wetted part of B is a stream surface. However, in order to ensure that the cavity interface 
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Table I. Comparison between the exact and the numerical 
solution for a sphere 

20 points along the wetted body 
O(rad) Numerical Exact IErrorl 

0-9248 09213 OQO3490 0.6614 
1-3228 1.4557 1.4541 0901579 
1.9342 1.3725 1.3737 0001 193 
2.6456 0.705 1 0.71 39 OW8831 

40 points along the wetted body 
B(rad) Numerical Exact [Error1 

03222 0.4759 0.4750 0000860 
0.6444 0.901 6 0.901 1 0000444 
0.9666 1.2348 1.2345 0.000323 
1.2889 1.4410 1.4408 0.00021 1 
1.61 11 1.4989 1.4988 0000077 
1.9333 1.4024 1.4025 0oooO84 
2.2555 1.1616 1-1619 0.000292 
2.5777 1.8010 0.801 7 0.000691 
2.8999 0.3558 0.3590 0.003 156 

80 points along the wetted body 
B(rad) Numerical Exact IErrorl 

0.1591 
0.3181 
0.4772 
0.6363 
07953 
0.9544 
1.1 135 
1.2725 
1.4316 
1.5907 
1.7497 
1.9088 
2.0679 
2.2270 
2.3860 
2-545 1 
2.7042 
2.8632 
3.0223 

0.2379 
0.4693 
06890 
08914 
1-0712 
1.2240 
1.3459 
1.4338 
1.4855 
1.4998 
1.4761 
1.4152 
1.3186 
1.1886 
1.0287 
0.8429 
0.6358 
0.4132 
0.1836 

02376 
04692 
06889 
08913 
1.0712 
1.2240 
1.3459 
1.4338 
1.4855 
0.4997 
1.4760 
1.4151 
1.3185 
1.1885 
1.0286 
08426 
06354 
0.4 1 22 
0.1785 

0000323 
0000 108 
O.ooOo66 
0900052 
0-000048 
0.000047 
0-000048 
0~00005 1 
O.ooOo54 
O.ooOo59 
0-000066 
0900076 
0.00009 1 
0~000115 
0.000157 
0.000236 
O~OoO4 1 7 
0.000985 
0.005111 

is a stream surface too, the assumed cavity interface shape has to be corrected as follows: 

47E s'" 0 v; 
v;- 112 1 .  sin 6" = __ = -sin 6" - - - e i -  &, 

ON 

where IC is the iteration counter. In a finite difference form the above equation can be written 
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Clearly, it is easy to verify that only when 0, =0, Ai, reduces to -eR,  i ,  and the new location of 
the cavity interface can be obtained as follows: 

R"= sin0"ds. Sb x K =  I' COSe"ds, 
0 

The above equation is computed to the same accuracy as the Fredholm integral equation, i.e. to 
order h3, and the iterative procedure is repeated until convergence is obtained. In such a case 3 is 
a stream surface and the cavity interface of B also satisfies the dynamic boundary condition. The 
present method converges to the same solution for any form of initial cavity location, but from 
our experience it is preferable to take as an initial guess a parabolic interface, which is a good 
approximation.' 

Only a part of the cavity interface is computed by equation (1 5 )  (about five to ten arc lengths of 
the wetted nose downstream of the separation). The rest of the cavity interface can be represented 
asymptotically according to Garabedian' as 

R = constant x S'/* (In S ) -  

The constant was found by matching the computed cavity interface to the above expression to 
maintain continuity. 

Drag coeflcient 

the wetted nose, i.e. 
The drag coefficient is determined directly by integration of the pressure distribution around 

where A, and R, are the cross-sectional area and radius at the separation point respectively and 
F d  is the drag force. The drag coefficient C ,  is non-dimensionalized to the dynamic pressure of the 
free flow. The computation is carried out for the number of different lengths downstream of 
separation and in each case the resulting cavitation number (r is verified to be small. Linear 
extrapolation then yields the drag coefficient at (T = 0. 

ANALYSIS AND CONCLUSIONS 

In order to check the accuracy of the proposed model, several numerical test cases have been 
computed. In Figures 2 and 3 the numerical results for parabolic shapes with fineness ratio D / L  
between 0 and 1 are presented and Figures 4-8 give the results for conical shapes. 

High-speed water tunnel experiments' show that the front part of the cavity interface is almost 
parabolic and the pressure inside the cavitation interface is approximately constant. Johnson and 
Rasnick6 use the analytic expression of the potential flow field of a fully immersed ellipsoid to 
compute the drag force of a parabolic wetted nose in a cavitation flow regime. The authors show 
that in the limiting case when the eccentricity of the ellipsoid becomes large, the front part is 
almost parabolic and the pressure along it decays rapidly to the free stream pressure. Therefore 
the force acting on the frontal part of such an ellipsoid can be related to the drag force on a 
parabolic nose shape in cavitation flow at 0 = 0 . ~  In Figure 2 the values computed using the 
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l / f  = .75 

Figure 2. Longitudinal cavity section (top) and pressure distribution (bottom) for a wetted nose, with arc length l i f= 1 
(left) and 1/f=0.75 (right) 

,008 - 

0. 0.2 0.4 0.6 0.8 1.0 

Figure 3. Drag of a parabolic nose; o=O 

l / f  

present method at CJ = 0.08 are compared with the results derived in Reference 6. In Figure 3 the 
computed drag coefficients for parabolic bodies are compared with the high-speed water 
experiments.' The computed pressure distribution along a disc interface is shown in Figure 5 and 
is compared with the numerical results obtained by Brennen2 

An experimental expression is proposed by May' for the cavity interface generated behind a 



AXIALLY SYMMETRIC CAVITATION FLOW 

\ 

- A - E q . 1 7  
I 1 I I 

953 

R / L  
2.5 - _ _ _ _ _ _ - -  - - -  - 

- ---EQ-17 
-2.5 I I I I I  I , I , ,  

0 2 4 6 8 10 12 

Figure 4. Cavity shape for a 45" cone 
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Figure 5. Pressure distribution for a 45" cone 
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5'L------ A 
0. I 

Figure 6. Cavity shape for a disc 

0.5 \ 

A = Ref. 2 s/ L 
0.0 " ' ' I I ' ' ' I ' I '  ' I ' 

0.0 0.25 0.50 0.75 1.0 

Figure 7. Pressure distribution for a disc 
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Figure 8. Comparison of numerical drag results with experimental results for a cone; u=O 

cone: 

where aid and C;$ are given in Table I1 for a disc, a sphere and a cone. 
The numerical results obtained in this research at  o=0.05 are compared with expression (17) 

and good agreement is obtained for a cone and a disc, as illustrated in Figures 4 and 6 
respectively. 

The drag coefficient obtained in this research for a disc at o=O is 0.820 for 21 mesh points 
along the wetted nose, compared with 0.827,' 0.823 (Armstrong, from Reference 9) and 0.824 
(Fisher, from Reference 9). 

The sensitivity of the numerical algorithm is checked by increasing the number of mesh points 
along the wetted head forms: 21 mesh points are found to give stable results for a disc, while for 
parabolic head forms 38 mesh points are needed. 

Good agreement is found between the drag coefficient obtained in this work and the 
experimental resultsg at  c = 0. This comparison is illustrated in Figure 8, where the broken curve 
denotes the numerical results obtained in this research and the full curve denotes the best line 
through the experimental data.' 

A smooth solution is obtained for a disc, while a local inaccuracy near the stagnation point 
appears in the solution for conical head forms at semi-cone angles less then 0.9 rad, resulting from 
inaccurate interpolation of the induced-velocity terms ( f  and g in equation (12)). The local 
inaccuracy has no effect on the overall solution (this has been checked by increasing the number 
of mesh points along the wetted nose), but it increases as a function of the wetted-nose 
slenderness. Such a local inaccuracy has not been observed for blunt wetted bodies (Figure 7). 

In conclusion, the method of vortex ring distributions appears to work well and to produce 
good results. A considerable saving in computer time can be achieved by using a varying mesh 
interval in the integration scheme, as well as by a correct representation of the functions f and g in 
the vicinity of the stagnation point. Possibly, an alternative approach to remove this difficulty is 
by using a refined integration method, in a fashion similar to the method proposed in Reference 5. 
The present numerical algorithm can be extended to compute the axial cavitation flow at any 
cavitation number by using the Riabouchinski model. However, such an option has not been 
included in the present study and will probably appear in a future work. 
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Table 11 

‘Wetted nose’ form afd G!; 
Disc 0.4 0.898 
Sphere 0.5 0.5 15 
Cone (45” half-angle) - 0.2 0.707 

955 

It is worth noting that in the present work the computer memory required is only that for one 
square matrix of size equal to the number of mesh points along the wetted nose and a vector that 
contains the cavity interface ordinates. The methods of References 2 and 3 require larger matrices, 
for which the dimensions are given by the number of mesh points along B. 
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